
Perceptron 

The perceptron is simplest neural network based algorithm.  
It only has one input layer and one output layer. 
 

About the transfer function 
Sigmoid is used for classification due to his nice derivative. For regression, other functions are used. 
However, it can also be used for the simple perceptron the step function which changes its value quickly. 
Nonetheless, since the step is discontinuous, it cannot be differentiate, in contrast with sigmoid. 
 

Why a bias is needed? 
The easiest way to understand why we need a bias is because, if we don’t have it, the perceptron cannot 
learn if it has a non-zero input and a zero output or viceversa. This is because when the sum is computed, 
if all inputs are zero the result will be zero and the output will be zero as well. Hence, there is no way the 
weights can learn something, because the result will be always zero. 
 
A more mathematical explanation is that the steepness of the transfer function (sigmoid) can be 
modified easily without any bias. In the following example, we have a one-to-one network. 

 
 
 
 
 

 
 
When we have a x 
dependent argument, the 
steepness of the sigmoid 
function can be modified. 
 
However, there is no way 
we can go anyplace further 
than 0 when the input is 0. 
 
For this, we need a bias. 
 
 
 
 
 
 
 
 

 
 
 



 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
Now, the sigmoid curve can be shifted and we can, for example, get an output of 0 when the input is 2. 
Usually, bias is -1 or 1.  
 
The AND example code shown later was used to try to understand whether -1 or 1 it is better. Since the 
[0 0  0] exists in the AND example (and therefore, it really does not matter that at 0 0 the algorithm 
learns something different than zero), the NAND logic gate was used. In this case, [0 0  1] so it makes 
more sense to use a positive bias because for input 0, we get a positive result. The amount of iterations 
has been measured and averaged, and in case of positive bias we get a slightly better result than with -1. 
 

Why deciding the proper learning rate is important? 



Having a small learning rate may slow down considerably the speed of the learning algorithm and it will 
need more iterations and consequently more time and resources. 
 
Having a big learning rate may make the algorithm jump from the minimum (as we can see in the 
picture) and end up climbing the mountain. 
 

 
Usually, the learning rate is                since the weights are small numbers, usually initialized 
randomly between 0 and 1. 
 
 

Example 1: AND 
In this case we have a very simple diagram with only two neurons as input and one as output. 
Additionally, we have a bias connected to the output. 
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To solve this problem, we can iterate as many times as needed over our training set until we get no 
errors. 
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To learn, we apply this: 
 
                     
 
After we finish iterating with no errors, we can build up the decision boundary using this formula: 
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If we think about that, all elements at one side of the 
previous formula belong to a class whereas at the other 
side they belong to the other class. 
 
In this picture we can see an AND example where all 
points in a mesh have been drawn, as well as the decision 
boundary. Code available in the Apendix I 
 
 
 
 
 

 
 

Example 2: XOR 
This is the best example to see how Perceptron fails at classifying XOR since it is not possible to separate 
both classes using only one line, in contrast with other logic functions. 
 

 
 
If we try to use the perceptron here, it will 

endlessly try to converge. 

 

 

 

 

 

Example 3: Evolution of the decision boundary 
Adding new data: 

data = 0.5 + (4-0.5).*rand(66,2); 
data = [data ones(66,1)]; 

  
data2 = 5 + (10-5).*rand(34,2); 
data2 = [data2 zeros(34,1)]; 

  
data = [data;data2] 

 
And plotting it in each iteration: 
x = -3:13; 



y = (-weights(2)*x+weights(1))/weights(3); 
plot(x,y,'m'); 

 
We can see the evolution of the decision boundary: 

 
 
 
 
 
 By the way, in this example, 
we can see that boundaries 
are not located at the same 
distance. That is because we 
have different amounts of 
samples. Using the same 
amount, the distance between 
the closest elements is the 
same. 
 
 

 

 

 

Example 4: Distinguishing more than 2 classes 
One may think that we can classify 3 or 4 classes using 2 output neurons. This is because we can have a 
target vector so that we can encode 2N different classes. For example, we have classes A, B, C and D, and 
two neurons, so when output is 00 it belongs to A, when it is 01 it belongs to B and so on. However, this 
does not always work, because each output neuron and the weights which come from the inputs can 
separate only one feature. 

 
As we can see here, we have 3 different 
elements which can be classified perfectly. 
However, the perceptron which only has 2 
output neurons works as follows: it 
distinguishes one feature from another. 
 
In this example, we have classes B (blue), R 
(red) and M (magenta) which respectively 
corresponds to 01, 00 and 10. 
 
 
 
 
 
 



 

 
This is how the algorithm plots each line. Therefore, we can say that we will have the same amount of 
lines than output neurons, whose characteristics lie upon the weights connected to the inputs. 

 
 
And here we can see an example when it is 
not possible the classification and 
therefore, the algorithm will endlessly 
work. 
 
Each class has 6 samples, and we can see 
that it’s not possible to separate M class 
from the rest using a straight line. 
 
We can see the code in the second 
appendix. 
 
 
 
 

 

What if we use N output neurons? 
You also may think that using N output neurons can be a good idea, and code our classes B, R, M as 
(0,0,1), (0,1,0) and (1,0,0) so that each has a unique characteristic that the algorithm can distinguish 
from the others. 
 
 
 
  



 
And in practice, it may work 
sometimes. Here we can see that 
each line uniquely separate each 
group (nonetheless it has an odd 
behavior since we can see those 
magenta sections where makes no 
sense to classify magenta elements). 
 
 
 
 
 
 
 
 
 
 
 
 
However, in cases such this, it is not 
possible to separate with a straight 
line all classes uniquely, specifically 
the blue one. In this case, the 
algorithm will be running endlessly. 
 
 
So, this algorithm will have higher 
chances to work with few elements 
in each class. Code is in appendix 
three.  
 
 
 
 
 
 

 
 
 
 
 
 
  



Appendix 1: AND example 
 
function [ output ] = activationstep( input, type ) 
    if strcmp(type,'step') 
       if(input>0) 
           output=1; 
       else 
           output=0; 
       end 
    elseif strcmp(type,'sigmoid') 
        output=1/(1+exp(-input)); 
    end 
end 

 

  

 
clear;clc; 

  
% AND 
data = [0 0 0; 0 1 0; 1 0 0; 1 1 1]; 
%data = [-1 -1 -1; -1 1 -1; 1 -1 -1; 1 1 1]; 
% OR 
%data = [0 0 0; 0 1 1; 1 0 1; 1 1 1]; 
% XOR 
%data = [0 0 0; 0 1 1; 1 0 1; 1 1 0]; 

  

  
% Input = bias + the rest without last row (targets) 
input = [-1*ones(size(data,1),1),data(:,1:end-1)]; 
target = data(:,end); 

  
%Learning rate 
eta = 0.5; 
% Amount of features 
inputNeurons = size(data,2)-1; 
% Amount of inputs for training (4 cases) 
inputCases = size(data,1); 

  
disp('First weights'); 
weights = rand(inputNeurons+1,1)'; 
disp(weights); 

  
% Plot elements 
plot(input(:,2),input(:,3),'ro') 
hold on; 

  
% Training until it has no errors 
repeat=1; 
counter=1; 
while repeat==1 
    repeat=0; 
    fprintf('Counter: %i.\n',counter)  
    for j=1:inputCases 
        y=activation(input(j,:)*weights','step'); 



        if target(j)~=y 

  %if abs(target(j)-y)>0.01 We have to use this with sigmoid since 
        %it's regression 

 
           fprintf('Target: %i, y: %i, j: %i\n',target(j),y,j); 

           
           weights = weights + eta*(target(j)-y)*input(j,:); 
           repeat=1; 
        end 

         
    end 
    counter=counter+1; 

     
end 
disp('Final weights'); 
disp(weights); 

  
% Ploting the mesh 
for i=-0.5:0.05:1.5 
   for j=-0.5:0.05:1.5 

  % Change this if using +1 as bias 
        res=activation(-weights(1)+weights(2)*i+weights(3)*j,'step'); 
        if res==1 

  %if res>0.5 % regresion 
            plot(i,j,'ro'); 
        else 
            plot(i,j,'bx'); 
        end 
   end  
end 

  
x = -3:3; 
% Decision boundary 

% Change this if using +1 as bias 
y = (-weights(2)*x+weights(1))/weights(3); 
plot(x,y); 
hold off; 

 

  



Appendix 2: 3 classes with two output neurons 
 
clear;clc; 

  
eachGroup=6; 

  
data = 0.5 + (4-0.5).*rand(eachGroup,2); 
data = [data zeros(eachGroup,2)]; 

  
data2 = 5 + (10-5).*rand(eachGroup,2); 
data2 = [data2 zeros(eachGroup,1) ones(eachGroup,1)]; 

  
data31 = 6 + (9-6).*rand(eachGroup,1); 
data32 = 0 + (5-0).*rand(eachGroup,1); 
data3 = [data31 data32 ones(eachGroup,1) zeros(eachGroup,1)]; 

  
data = [data;data2;data3]; 

  

  

  
% Input = bias + the rest without last row (targets) 
input = [-1*ones(size(data,1),1),data(:,1:end-2)] 
% Last two columns are now target 
target = data(:,end-1:end) 

  
%Learning rate 
eta = 0.5; 
% Amount of features. -2 last rows 
inputNeurons = size(data,2)-2; 
% Amount of inputs for training (4 cases) 
inputCases = size(data,1); 

  

  
disp('First weights'); 
weights1 = rand(inputNeurons+1,1)'; 
weights2 = rand(inputNeurons+1,1)'; 
disp(weights1); 
disp(weights2); 

  
% Plot elements 
plot(input(:,2),input(:,3),'go') 
hold on; 

  
% Training 10 times 
repeat=1; 
counter=1; 
while repeat==1 
    repeat=0; 
    fprintf('Counter: %i.\n',counter)  
    for j=1:inputCases 
        y1=activation(input(j,:)*weights1','step'); 
        y2=activation(input(j,:)*weights2','step'); 
        if target(j,1)~=y1 



        %if abs(target(j)-y1)>0.5 % We have to use this with sigmoid since 
        %it's regression 
           fprintf('Target: %i, y: %i, j: %i\n',target(j,1),y1,j); 
           weights1 = weights1 + eta*(target(j,1)-y1)*input(j,:); 
           repeat=1; 
        end 

         
        if target(j,2)~=y2 
        %if abs(target(j)-y2)>0.5 % We have to use this with sigmoid since 
        %it's regression 
           fprintf('Target: %i, y: %i, j: %i\n',target(j,2),y2,j); 
           weights2 = weights2 + eta*(target(j,2)-y2)*input(j,:); 
           repeat=1; 
        end 
    end 
    counter=counter+1; 

     

        
end 
disp('Final weights'); 
disp(weights1); 
disp(weights2); 

  

  
% Ploting the mesh 
for i=-0.5:0.3:10.5 
   for j=-0.5:0.3:10.5 
       % Change this if using +1 as bias 
        res1=activation(-weights1(1)+weights1(2)*i+weights1(3)*j,'step'); 
        res2=activation(-weights2(1)+weights2(2)*i+weights2(3)*j,'step'); 

         
        if res1==0 && res2==0 
        %if res>0.5 % regresion 
            plot(i,j,'ro'); 
        elseif res1==0 && res2==1 
            plot(i,j,'bo'); 
        else 
            plot(i,j,'mo'); 
        end 
   end  
end 

  
x = -3:13; 
% Decision boundary 
% Change this if using +1 as bias 
y = (-weights1(2)*x+weights1(1))/weights1(3); 
plot(x,y); 
y = (-weights2(2)*x+weights2(1))/weights2(3); 
plot(x,y); 
plot(input(:,2),input(:,3),'ko') 
hold off; 

 

  



Appendix 3: N output neurons 
 
clear;clc; 

  
eachGroup=15; 
totalClasses=3; 

  
data = 0.5 + (4-0.5).*rand(eachGroup,2); 
data = [data zeros(eachGroup,2) ones(eachGroup,1)]; 

  
data2 = 5 + (10-5).*rand(eachGroup,2); 
data2 = [data2 zeros(eachGroup,1) ones(eachGroup,1) zeros(eachGroup,1)]; 

  
data31 = 6 + (9-6).*rand(eachGroup,1); 
data32 = 0 + (5-0).*rand(eachGroup,1); 
data3 = [data31 data32 ones(eachGroup,1) zeros(eachGroup,1) 

zeros(eachGroup,1)]; 

  
data = [data;data2;data3]; 

  
% Input = bias + the rest without last row (targets) 
input = [-1*ones(size(data,1),1),data(:,1:end-totalClasses)] 
% Last N columns are now target 
target = data(:,end-(totalClasses-1):end) 

  
%Learning rate 
eta = 0.5; 
% Amount of features. -N last rows 
inputNeurons = size(data,2)-totalClasses; 
% Amount of inputs for training (4 cases) 
inputCases = size(data,1); 

  

  
disp('First weights'); 
weights = rand(inputNeurons+1,totalClasses)'; 
disp(weights); 

  
% Plot elements 
plot(input(1:eachGroup,2),input(1:eachGroup,3),'mo') 
hold on; 
plot(input(eachGroup+1:eachGroup*2,2),input(eachGroup+1:eachGroup*2,3),'ro') 
plot(input(eachGroup*2+1:eachGroup*3,2),input(eachGroup*2+1:eachGroup*3,3),'b

o') 

  
% Training 10 times 
repeat=1; 
counter=1; 
while repeat==1 
    repeat=0; 
    fprintf('Counter: %i.\n',counter)  

         
    for j=1:inputCases 

         



        for k=1:totalClasses 
            y=activation(input(j,:)*weights(k,:)','step'); 

             
            if target(j,k)~=y 
            %if abs(target(j)-y1)>0.5 % We have to use this with sigmoid 

since 
            %it's regression 
               fprintf('Target: %i, y: %i, j: %i\n',target(j,k),y,j); 
               weights(k,:) = weights(k,:) + eta*(target(j,k)-y)*input(j,:); 
               repeat=1; 
            end 

  
        end 
    end 
    counter=counter+1; 

        
end 
disp('Final weights'); 
disp(weights); 

  

  
% Ploting the mesh 
for i=-0.5:0.3:10.5 
   for j=-0.5:0.3:10.5 
       % Change this if using +1 as bias 
       for k=1:totalClasses 
            res(k)=activation(-

weights(k,1)+weights(k,2)*i+weights(k,3)*j,'step'); 
       end 
       index=find(res); %it finds the index of non-zero values 

        
       %if we change totalClasses, we have to change this to make it work 
        if index==1 
            plot(i,j,'ro'); 
        elseif index==2 
            plot(i,j,'bo'); 
        else 
            plot(i,j,'mo');   
        end 
   end  
end 

  
x = -3:13; 
% Decision boundary 
% Change this if using +1 as bias 
for i=1:totalClasses 
    y = (-weights(i,2)*x+weights(i,1))/weights(i,3); 
    plot(x,y); 
end 

  
plot(input(:,2),input(:,3),'ko') 
hold off; 

 


