
Perceptron

The perceptron is simplest neural network based algorithm.
It only has one input layer and one output layer.

About the transfer function
Sigmoid is used for classification due to his nice derivative. For regression, other functions are used.
However, it can also be used for the simple perceptron the step function which changes its value quickly.
Nonetheless, since the step is discontinuous, it cannot be differentiate, in contrast with sigmoid.

Why a bias is needed?
The easiest way to understand why we need a bias is because, if we don’t have it, the perceptron cannot
learn if it has a non-zero input and a zero output or viceversa. This is because when the sum is computed,
if all inputs are zero the result will be zero and the output will be zero as well. Hence, there is no way the
weights can learn something, because the result will be always zero.

A more mathematical explanation is that the steepness of the transfer function (sigmoid) can be
modified easily without any bias. In the following example, we have a one-to-one network.

When we have a x
dependent argument, the
steepness of the sigmoid
function can be modified.

However, there is no way
we can go anyplace further
than 0 when the input is 0.

For this, we need a bias.

Now, the sigmoid curve can be shifted and we can, for example, get an output of 0 when the input is 2.
Usually, bias is -1 or 1.

The AND example code shown later was used to try to understand whether -1 or 1 it is better. Since the
[0 0 0] exists in the AND example (and therefore, it really does not matter that at 0 0 the algorithm
learns something different than zero), the NAND logic gate was used. In this case, [0 0 1] so it makes
more sense to use a positive bias because for input 0, we get a positive result. The amount of iterations
has been measured and averaged, and in case of positive bias we get a slightly better result than with -1.

Why deciding the proper learning rate is important?

Having a small learning rate may slow down considerably the speed of the learning algorithm and it will
need more iterations and consequently more time and resources.

Having a big learning rate may make the algorithm jump from the minimum (as we can see in the
picture) and end up climbing the mountain.

Usually, the learning rate is since the weights are small numbers, usually initialized
randomly between 0 and 1.

Example 1: AND
In this case we have a very simple diagram with only two neurons as input and one as output.
Additionally, we have a bias connected to the output.

 -1

 x1 w0
 w1 activation y

 x2 w2

To solve this problem, we can iterate as many times as needed over our training set until we get no
errors.

 ∑

To learn, we apply this:

After we finish iterating with no errors, we can build up the decision boundary using this formula:

X1 X2 Y

0 0 0

0 1 0

1 0 0

1 1 1

If we think about that, all elements at one side of the
previous formula belong to a class whereas at the other
side they belong to the other class.

In this picture we can see an AND example where all
points in a mesh have been drawn, as well as the decision
boundary. Code available in the Apendix I

Example 2: XOR
This is the best example to see how Perceptron fails at classifying XOR since it is not possible to separate
both classes using only one line, in contrast with other logic functions.

If we try to use the perceptron here, it will

endlessly try to converge.

Example 3: Evolution of the decision boundary
Adding new data:

data = 0.5 + (4-0.5).*rand(66,2);
data = [data ones(66,1)];

data2 = 5 + (10-5).*rand(34,2);
data2 = [data2 zeros(34,1)];

data = [data;data2]

And plotting it in each iteration:
x = -3:13;

y = (-weights(2)*x+weights(1))/weights(3);
plot(x,y,'m');

We can see the evolution of the decision boundary:

 By the way, in this example,
we can see that boundaries
are not located at the same
distance. That is because we
have different amounts of
samples. Using the same
amount, the distance between
the closest elements is the
same.

Example 4: Distinguishing more than 2 classes
One may think that we can classify 3 or 4 classes using 2 output neurons. This is because we can have a
target vector so that we can encode 2N different classes. For example, we have classes A, B, C and D, and
two neurons, so when output is 00 it belongs to A, when it is 01 it belongs to B and so on. However, this
does not always work, because each output neuron and the weights which come from the inputs can
separate only one feature.

As we can see here, we have 3 different
elements which can be classified perfectly.
However, the perceptron which only has 2
output neurons works as follows: it
distinguishes one feature from another.

In this example, we have classes B (blue), R
(red) and M (magenta) which respectively
corresponds to 01, 00 and 10.

This is how the algorithm plots each line. Therefore, we can say that we will have the same amount of
lines than output neurons, whose characteristics lie upon the weights connected to the inputs.

And here we can see an example when it is
not possible the classification and
therefore, the algorithm will endlessly
work.

Each class has 6 samples, and we can see
that it’s not possible to separate M class
from the rest using a straight line.

We can see the code in the second
appendix.

What if we use N output neurons?
You also may think that using N output neurons can be a good idea, and code our classes B, R, M as
(0,0,1), (0,1,0) and (1,0,0) so that each has a unique characteristic that the algorithm can distinguish
from the others.

And in practice, it may work
sometimes. Here we can see that
each line uniquely separate each
group (nonetheless it has an odd
behavior since we can see those
magenta sections where makes no
sense to classify magenta elements).

However, in cases such this, it is not
possible to separate with a straight
line all classes uniquely, specifically
the blue one. In this case, the
algorithm will be running endlessly.

So, this algorithm will have higher
chances to work with few elements
in each class. Code is in appendix
three.

Appendix 1: AND example

function [output] = activationstep(input, type)
 if strcmp(type,'step')
 if(input>0)
 output=1;
 else
 output=0;
 end
 elseif strcmp(type,'sigmoid')
 output=1/(1+exp(-input));
 end
end

clear;clc;

% AND
data = [0 0 0; 0 1 0; 1 0 0; 1 1 1];
%data = [-1 -1 -1; -1 1 -1; 1 -1 -1; 1 1 1];
% OR
%data = [0 0 0; 0 1 1; 1 0 1; 1 1 1];
% XOR
%data = [0 0 0; 0 1 1; 1 0 1; 1 1 0];

% Input = bias + the rest without last row (targets)
input = [-1*ones(size(data,1),1),data(:,1:end-1)];
target = data(:,end);

%Learning rate
eta = 0.5;
% Amount of features
inputNeurons = size(data,2)-1;
% Amount of inputs for training (4 cases)
inputCases = size(data,1);

disp('First weights');
weights = rand(inputNeurons+1,1)';
disp(weights);

% Plot elements
plot(input(:,2),input(:,3),'ro')
hold on;

% Training until it has no errors
repeat=1;
counter=1;
while repeat==1
 repeat=0;
 fprintf('Counter: %i.\n',counter)
 for j=1:inputCases
 y=activation(input(j,:)*weights','step');

 if target(j)~=y

 %if abs(target(j)-y)>0.01 We have to use this with sigmoid since
 %it's regression

 fprintf('Target: %i, y: %i, j: %i\n',target(j),y,j);

 weights = weights + eta*(target(j)-y)*input(j,:);
 repeat=1;
 end

 end
 counter=counter+1;

end
disp('Final weights');
disp(weights);

% Ploting the mesh
for i=-0.5:0.05:1.5
 for j=-0.5:0.05:1.5

 % Change this if using +1 as bias
 res=activation(-weights(1)+weights(2)*i+weights(3)*j,'step');
 if res==1

 %if res>0.5 % regresion
 plot(i,j,'ro');
 else
 plot(i,j,'bx');
 end
 end
end

x = -3:3;
% Decision boundary

% Change this if using +1 as bias
y = (-weights(2)*x+weights(1))/weights(3);
plot(x,y);
hold off;

Appendix 2: 3 classes with two output neurons

clear;clc;

eachGroup=6;

data = 0.5 + (4-0.5).*rand(eachGroup,2);
data = [data zeros(eachGroup,2)];

data2 = 5 + (10-5).*rand(eachGroup,2);
data2 = [data2 zeros(eachGroup,1) ones(eachGroup,1)];

data31 = 6 + (9-6).*rand(eachGroup,1);
data32 = 0 + (5-0).*rand(eachGroup,1);
data3 = [data31 data32 ones(eachGroup,1) zeros(eachGroup,1)];

data = [data;data2;data3];

% Input = bias + the rest without last row (targets)
input = [-1*ones(size(data,1),1),data(:,1:end-2)]
% Last two columns are now target
target = data(:,end-1:end)

%Learning rate
eta = 0.5;
% Amount of features. -2 last rows
inputNeurons = size(data,2)-2;
% Amount of inputs for training (4 cases)
inputCases = size(data,1);

disp('First weights');
weights1 = rand(inputNeurons+1,1)';
weights2 = rand(inputNeurons+1,1)';
disp(weights1);
disp(weights2);

% Plot elements
plot(input(:,2),input(:,3),'go')
hold on;

% Training 10 times
repeat=1;
counter=1;
while repeat==1
 repeat=0;
 fprintf('Counter: %i.\n',counter)
 for j=1:inputCases
 y1=activation(input(j,:)*weights1','step');
 y2=activation(input(j,:)*weights2','step');
 if target(j,1)~=y1

 %if abs(target(j)-y1)>0.5 % We have to use this with sigmoid since
 %it's regression
 fprintf('Target: %i, y: %i, j: %i\n',target(j,1),y1,j);
 weights1 = weights1 + eta*(target(j,1)-y1)*input(j,:);
 repeat=1;
 end

 if target(j,2)~=y2
 %if abs(target(j)-y2)>0.5 % We have to use this with sigmoid since
 %it's regression
 fprintf('Target: %i, y: %i, j: %i\n',target(j,2),y2,j);
 weights2 = weights2 + eta*(target(j,2)-y2)*input(j,:);
 repeat=1;
 end
 end
 counter=counter+1;

end
disp('Final weights');
disp(weights1);
disp(weights2);

% Ploting the mesh
for i=-0.5:0.3:10.5
 for j=-0.5:0.3:10.5
 % Change this if using +1 as bias
 res1=activation(-weights1(1)+weights1(2)*i+weights1(3)*j,'step');
 res2=activation(-weights2(1)+weights2(2)*i+weights2(3)*j,'step');

 if res1==0 && res2==0
 %if res>0.5 % regresion
 plot(i,j,'ro');
 elseif res1==0 && res2==1
 plot(i,j,'bo');
 else
 plot(i,j,'mo');
 end
 end
end

x = -3:13;
% Decision boundary
% Change this if using +1 as bias
y = (-weights1(2)*x+weights1(1))/weights1(3);
plot(x,y);
y = (-weights2(2)*x+weights2(1))/weights2(3);
plot(x,y);
plot(input(:,2),input(:,3),'ko')
hold off;

Appendix 3: N output neurons

clear;clc;

eachGroup=15;
totalClasses=3;

data = 0.5 + (4-0.5).*rand(eachGroup,2);
data = [data zeros(eachGroup,2) ones(eachGroup,1)];

data2 = 5 + (10-5).*rand(eachGroup,2);
data2 = [data2 zeros(eachGroup,1) ones(eachGroup,1) zeros(eachGroup,1)];

data31 = 6 + (9-6).*rand(eachGroup,1);
data32 = 0 + (5-0).*rand(eachGroup,1);
data3 = [data31 data32 ones(eachGroup,1) zeros(eachGroup,1)

zeros(eachGroup,1)];

data = [data;data2;data3];

% Input = bias + the rest without last row (targets)
input = [-1*ones(size(data,1),1),data(:,1:end-totalClasses)]
% Last N columns are now target
target = data(:,end-(totalClasses-1):end)

%Learning rate
eta = 0.5;
% Amount of features. -N last rows
inputNeurons = size(data,2)-totalClasses;
% Amount of inputs for training (4 cases)
inputCases = size(data,1);

disp('First weights');
weights = rand(inputNeurons+1,totalClasses)';
disp(weights);

% Plot elements
plot(input(1:eachGroup,2),input(1:eachGroup,3),'mo')
hold on;
plot(input(eachGroup+1:eachGroup*2,2),input(eachGroup+1:eachGroup*2,3),'ro')
plot(input(eachGroup*2+1:eachGroup*3,2),input(eachGroup*2+1:eachGroup*3,3),'b

o')

% Training 10 times
repeat=1;
counter=1;
while repeat==1
 repeat=0;
 fprintf('Counter: %i.\n',counter)

 for j=1:inputCases

 for k=1:totalClasses
 y=activation(input(j,:)*weights(k,:)','step');

 if target(j,k)~=y
 %if abs(target(j)-y1)>0.5 % We have to use this with sigmoid

since
 %it's regression
 fprintf('Target: %i, y: %i, j: %i\n',target(j,k),y,j);
 weights(k,:) = weights(k,:) + eta*(target(j,k)-y)*input(j,:);
 repeat=1;
 end

 end
 end
 counter=counter+1;

end
disp('Final weights');
disp(weights);

% Ploting the mesh
for i=-0.5:0.3:10.5
 for j=-0.5:0.3:10.5
 % Change this if using +1 as bias
 for k=1:totalClasses
 res(k)=activation(-

weights(k,1)+weights(k,2)*i+weights(k,3)*j,'step');
 end
 index=find(res); %it finds the index of non-zero values

 %if we change totalClasses, we have to change this to make it work
 if index==1
 plot(i,j,'ro');
 elseif index==2
 plot(i,j,'bo');
 else
 plot(i,j,'mo');
 end
 end
end

x = -3:13;
% Decision boundary
% Change this if using +1 as bias
for i=1:totalClasses
 y = (-weights(i,2)*x+weights(i,1))/weights(i,3);
 plot(x,y);
end

plot(input(:,2),input(:,3),'ko')
hold off;

